Discrete curvatures and Gauss maps for polyhedral surfaces
نویسندگان
چکیده
The paper concerns the problem of correct curvatures estimates directly from polygonal meshes. We present a new algorithm that allows the construction of unambiguous Gauss maps for a large class of polyhedral surfaces, including surfaces of non-convex objects and even non-manifold surfaces. The resulting Gauss map provides shape recognition and curvature characterisation of the polyhedral surface (polygonal mesh) and can be used further for optimising the mesh or for developing subdivision schemes.
منابع مشابه
Curvatures of Smooth and Discrete Surfaces
We discuss notions of Gauss curvature and mean curvature for polyhedral surfaces. The discretizations are guided by the principle of preserving integral relations for curvatures, like the Gauss–Bonnet theorem and the mean-curvature force balance equation.
متن کاملA curvature theory for discrete surfaces based on mesh parallelity
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces’ areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature.We dis...
متن کاملGenerating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملTranslation surfaces according to a new frame
In this paper we studied the translation surfaces according to a new frame called q-frame in three dimensional Euclidean space. The curvatures of the translation surface are obtained in terms of q-frame curvatures. Finally some special cases are investigated for these surfaces.
متن کاملOn offsets and curvatures for discrete and semidiscrete surfaces
This paper studies semidiscrete surfaces from the viewpoint of parallelity, offsets, and curvatures. We show how various relevant classes of surfaces are defined by means of an appropriate notion of infinitesimal quadrilateral, how offset surfaces behave in the semidiscrete case, and how to extend and apply the mixed-area based curvature theory which has been developed for polyhedral surfaces.
متن کامل